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Abstract—In many real-world applications, the problem of learning from imbalanced data (the imbalanced learningproblem) is a relatively 

new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with 

the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent 

complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to 

transform vast amounts of raw data efficiently into information and knowledgerepresentation.In this paper, we present a new hybrid subset 

filtering approach for learning from skewed trainingdata. This algorithm provides a simpler and faster alternative by using C4.5 as base 

algorithm. We conduct experiments usingeleven UCI data sets from various application domains using f0ur base learners,and five evaluation 

metrics. Experimentalresults show that our method has higher Area under the ROC Curve, F-measure, precision, TP rate and TN rate val-

ues than many existing class imbalance learning methods. 

 

Index Terms— Classification, class imbalance, weighted sampling, subset filtering. 

—————————      —————————— 
A dataset is class imbalanced if the classification categories are not 

approximately equally represented. The level of imbalance (ratio of 
size of the majority class to minority class) can be as huge as 

1:99[1]. It is noteworthy that class imbalance is emerging as an im-

portant issue in designing classifiers [2], [3], [4]. Furthermore, the 
class with the lowest number of instances is usually the class of in-

terest from the point of view of the learning task [5]. This problem is 
of great interest because it turns up in many real-world classification 

problems, such as remote-sensing [6], pollution detection [7], risk 
management [8], fraud detection [9], and especially medical diagno-

sis [10]–[13]. 

 
There exist techniques to develop better performing classifiers with 

imbalanced datasets, which are generally called Class Imbalance 
Learning (CIL) methods. These methods can be broadly divided into 

two categories, namely, external methods and internal methods. Ex-
ternal methods involve preprocessing of training datasets in order to 

make them balanced, while internal methods deal with modifications 
of the learning algorithms in order to reduce their sensitiveness to 

class imbalance [14]. The main advantage of external methods as 
previously pointed out, is that they are independent of the underlying 

classifier. In this paper, we are laying more stress to propose an ex-
ternal CIL method for solving the class imbalance problem. 

 
This paper is organized as follows. Section 2 briefly reviews the 
Data Balancing problems and its measures.andin Section 3, we dis-

cuss the proposed method of using the Subset filtering technique for 
CIL. Section 4 presents the imbalanced datasets used and measures 

used for validation , while In Section 5, we present the experimental 
setting andIn Section 6discuss, in detail, the classification results 

obtained by the proposed method and compare them with the results 
obtained by different existing methods and finally, in Section 7, we 

conclude the paper. 
 

 

 

2. DATA BALANCING 
Whenever a class in a classification task is underrepresented (i.e., 
has a lower prior probability) compared to otherclasses, we consider  

the data as imbalanced [15], [16]. The main problem in imbalanced 

data is that the majority classes that are represented by large numbers 
of patterns rule the classifier decision boundaries at the expense of 

the minority classes that are represented by small numbers of pat-

terns. This leads to high and low accuracies in classifying the majori-
ty and minority classes, respectively, which do not necessarily reflect 

the true difficulty in classifying these classes. Most common solu-
tions to this problem balance the number of patterns in the minority 

or majority classes.  
 

 
Either way, balancing the data has been found to alleviate the prob-

lem of imbalanced data and enhance accuracy [15],[16], [17]. Data 
balancing is performed by, e.g., oversamplingpatterns of minority 

classes either randomly or from areasclose to the decision bounda-
ries. Interestingly, random oversamplingis found comparable to more 

sophisticated oversamplingmethods [17]. Alternatively, undersam-
pling isperformed on majority classes either randomly or fromareas 

far away from the decision boundaries. We note thatrandom under-
sampling may remove significant patternsand random oversampling 

may lead to overfitting, sorandom sampling should be performed 
with care. We alsonote that, usually, oversampling of minority 

classes is moreaccurate than undersampling of majority classes [17]. 
 

 
Resampling techniques can be categorized into three groups. Under-

sampling methods, which create a subset of the original data-set by 
eliminating instances (usually majority class instances); oversam-

pling methods, which create a superset of the original data-set by 
replicating some instances or creating new instances from existing 

ones; and finally, hybrids methods that combine both sampling me-
thods. Among these categories, there exist several different propos-

als; from this point, we only center our attention in those that have 

been used in under sampling. 

 Random undersampling: It is a nonheuristic method that 
aims to balance class distribution through the random eli-

mination of majority class examples. Its major drawback is 
that it can discard potentially useful data, which could be 

important for the induction process.  
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 Random oversampling: In the same way as random over-
sampling, it tries to balance class distribution, but in this 
case, randomly replicating minority class instances. Several 

authors agree that this method can increase the likelihood 
of occurring overfitting, since it makes exact copies of ex-

isting instances. 

 Hybrid Methods:In this hybrid method both undersampling 

and oversampling will be applied for the datasets so as to 
make it a balance dataset. 

 
 

The bottom line is that when studying problems with imbalanced 
data, using the classifiers produced by standard machine learning 

algorithms without adjusting the output threshold may well be a crit-

ical mistake.This skewness towards minority class (positive) general-
ly causes the generation of a high number of false-negative predic-

tions, which lower the model’s performance on the positive class 
compared with the performance on the negative (majority) class.A 

comprehensive review of different CIL methods can be found in 
[18]. The following two sections briefly discuss the external-

imbalance and internal-imbalance learning methods.  
 

 
The external methods are independent from the learning algorithm 

being used, and they involve preprocessing of the training datasets to 
balance them before training the classifiers. Different resampling 

methods, such as random and focused oversampling and undersam-
pling, fall into to this category. In random undersampling, the ma-

jority-class examples are removed randomly, until a particular class 
ratio is met [19]. In random oversampling, the minority-class exam-

ples are randomly duplicated, until a particular class ratio is met 
[18]. Synthetic minority oversamplingtechnique (SMOTE) [20] is an 

oversampling method, where new synthetic examples are generated 
in the neighborhood of the existing minority-class examples rather 

than directly duplicating them. In addition, several informed sam-
pling methods have been introduced in [21]. A clustering-based sam-

pling method has been proposed in [22], while a genetic algorithm 
based sampling method has been proposed in [23]. 

 

 

3. Class Imbalance Learning using Subset Filtering  
In this section, we follow a design decomposition approach to sys-

tematically analyze the different unbalanced domains. We first brief-
ly introduce the design decomposition methodology adopted for new 

proposed approach. 
 

Algorithm 1 TheProposed Algorithm. 

 

1: {Input: A set of minor class examples P, a set  

Ofmajorclass examples N,jPj<jN j, and T,  

thenumber ofsubsets to be sampled from N.} 

2: i ← 0, T=N/P. 

3: repeat 

4: i= i+ 1 

5: Randomly sample a subset NifromN, 

jNij=jPj. 

6: Combine P and Ni to formNPi 

6: Apply filter on aNPi 

7: Train and Learn  A Base Classifier (C4.5) 

usingNPi. Obtain the values of 

 AUC,TP,FP,F-Measure 

7: until i= T 8: Output: Average Measure; 

The different components of our proposed algorithm are elaborated 
in the next subsections. 

 

 

3.1 Dataset Sampling 

 

An easy way to sample a dataset is by selecting instances randomly 
from all classes.However, sampling in this way can break the dataset 

in anunequal priority way and more number of instances of the same 
class may be chosen in sampling. To resolve this problem and main-

tain uniformity in sample, we propose a samplingstrategy called 
weighted component sampling.  

Before creating multiple subsets, we will create the number of ma-
jority subsets depending upon the number of minority instances. 

 

 

 

3.2 Identifying number of subsets of majority class 

 
The ratio of majority and minority instances in the unbalanced data-
set is used to decide the number of subset of majority instances (T) 

to be created. 
 

T= no. of majority inst(N)./no. of minority inst(P). 
 

3.3 Applying filter 
  
 

 
Subsets of majority instances are combined with minority subset and 

multiple balanced subsets are formed. Applying a specific filtering 

technique at this stage will help to reduce the class imbalance effects. 
So, Correlation based Feature Subset (CFS) filter is applied at this 

stage.  
 

 

3.4Averaging the measures  
 

         
The subsets of balanced datasets created are used to run multiple 

times and the resulted values are averaged to find the overall result. 
In results we have obtained observations for AUC, Precision, F-

measure, Sensitivity, Specificity and Accuracy. 
 

 

4. Datasets and measures 

We considered fourbenchmark real-world imbalanceddataset 

from the UCI machine learning repository [24] to validateour pro-
posed method. Table II summarizes the details of these datasets in 

the ascending order of the positive-to-negative dataset ratio. This 

contains the name of the dataset, the total number of examples (To-
tal), attribute, the number of target classes for each dataset, number 

of minority class examples (#min.), the number of .majority class 
examples (#maj.). These datasets represent a whole variety of do-

mains, complexities, and imbalance ratios.For every data set, we 
perform a tenfold stratified cross validation. Within each fold, the 

classification method is repeated ten times considering that the sam-
pling of subsets introduces randomness. The AUC, Precision,   
F-measure, TP rate and TN Rateof thiscross-validation process are 
averaged from these ten runs. The whole cross-validation process is 
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repeated for ten times, and the final values from this method are the 
averages of these ten cross-validation runs. 

Evaluation Criteria: 
To assess theclassification results we count the number of true posi-

tive (TP),true negative (TN), false positive (FP) (actually negative, 
but classifiedas positive) and false negative (FN) (actually positive, 

butclassified as negative) examples.It is now well known that error 

rate is not anappropriate evaluation criterion when there is class im-
balance or unequal costs. In this paper, we use AUC, Precision, F-

measure, TP Rate and TN Rate as performance evaluation measures.  
 

 
Let us define a few well known and widely used measures: 

 
 

Apart from these simple metrics, it is possible to encounter several-
more complex evaluation measures that have been used in different 

practical domains. One of the most popular techniques for the evalu-
ation of classifiers in imbalanced problems is the Receiver Operating 

Characteristic (ROC) curve, which is a tool for visualizing, organiz-
ing and selecting classifiers based on their tradeoffs between benefits 

(true positives) and costs (false positives). 
 

 
A quantitative representation of a ROC curve is the area under it, 

which is known as AUC. When only one run is available from a clas-
sifier, the AUC can be computed as the arithmetic mean (macro-

average) of TPrate and TNrate: 
 

 
The Area under Curve (AUC) measure is computed by, 

 

 

 

 
Or  

 

 
 

 
On the other hand, in several problems we are especially interestedin 

obtaining high performance on only one class. For example, in the 
diagnosis of a rare disease, one of the most important things is to 

know how reliable a positive diagnosis is. For such problems, the 
precision (or purity) metric is often adopted, which 
can be defined as the percentage of examples that are correctly la-

beled as positive: 
 

 
The Precision measure is computed by, 

 

 
FPTP

TP
ecisionPr

 

 The F-measure Value is computed by, 

 

 
  

To deal with class imbalance, sensitivity (or recall) and specificity 
have usually been adopted to monitor the classification performance 
on each class separately. Note that sensitivity (also called true posi-

tive rate, TPrate) is the percentage of positive examplesthat are cor-
rectly classified, while specificity (also referred to as true negative 

rate, TNrate) is defined as the proportion of negative examples that 
are correctly classified: 

 
The True Positive Rate measure is computed by, 

 

FNTP

TP
veRateTruePositi

 
 
The True Negative Rate measure is computed by, 

 
FPTN

TN
veRateTrueNegati

 
5. Experimental Settings 

A. Algorithms and Parameters 

 
In first place, we need to define a baseline classifier which we use in 

our proposed algorithm implementation. With this goal, we have 
used C4.5 decision tree generating algorithm [25]. Furthermore, it 

has been widely used to deal with imbalanced data-sets [26]–[28], 
and C4.5 has also been included as one of the top-ten data-mining 

algorithms [29]. Because of these facts, we have chosen it as the 
most appropriate base learner. C4.5 learning algorithm constructs the 

decision tree top-down by the usage of the normalized information 
gain (difference in entropy) that results from choosing an attribute 

for splitting the data. The attribute with the highest normalized in-
formation gain is the one used to make the decision. To validate the 

proposed algorithm, we compared it with the traditional 
C4.5,CART,REP and SMOTE. Elevenreal world benchmark data 

sets taken from the UCI Machine Learning Repositoryare used 
throughout the experiments (see Table 1). We performed theimple-

mentation using Weka on Windows XP with 2Duo CPU runningon 
3.16 GHz PC with 3.25 GB RAM. 

 
2) Evaluations on Four Real-World Datasets: 

 
We evaluate theCILSW model on four real-world datasets including 

Ecolic, Diabetes, Hepatitis and Breast-w datasets. The fourdatasets 

areobtained from the University of California at Irvine machine lear-
ningrepository [24].   

 
We then constructclassifiers from theimbalanced data based 

on the training dataset, and perform evaluationson the test data.We 
repeat this procedure ten times and use the averageof the results as 

the performance metric. The detailedinformation about the datasets is 
described in Table 1. 

 

Table 1 Summary of benchmark imbalanced datasets 
__________________________________________________ 

Datasets # Ex.# Atts. Class (_,+)  

__________________________________________________ 

Ecolic           336 8  (cp, im)    
Hepatitis       155   19 (die; live) 

Ionosphere    351 34  (b;g) 
Labor            56 16 (bad ; good )  
Breast           268 9 (recurrence; no-recurrence) 

Breast_w      699  9 (benign; malignant) 

2

1 RATERATE FPTP
AUC

2

RATERATE TNTP
AUC

callecision

callecision
measureF

RePr

RePr2
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Diabetes       768  8          (tested-positive; tested-negative) 
Vote             435 16 (democrat ;republican )  
Sonar      208 61  (Rock, Mine) 

Sick     3772  30  (Negative, Sick) 

__________________________________________________ 
 

6. Experimental Results 

We have analysis the performance of our proposed algorithm on 

class imbalance problem in the following eleven real-world datasets. 
(1) Ecolic Dataset: This UCI dataset was contributed by Paul Hor-

ton. Number of instances in the data set is 101, number of attributes 
is 7. The number of classes is 8. There are no missing values in this 

dataset. The results of the tenfold cross validation are shown in Table 
2  From Tables 13-17, we can observe the results of  Proposed    

Algorithm Vs various algorithms with respect to AUC, Precision, F-
measure, TP rate and TN rate. From all the tables we can conclude 

that Proposed algorithm has performed well in the case of AUC im-

provement, Precision improvement, F-measure improvement and it 

is comparable in the case of TP Rate and TN Rate. The reason for 

the better performance of proposed algorithm is due to the multiple 

class nature of the dataset and the majority and minority ratio of the 
dataset is very low. 

 
(2)Diabetes Dataset :The Pima Indians diabetes data set obtained 

from the University of California at Irvine (UCI) repository [42] 
contains 768 samples from two classes with 500 negative samples 
and 268 positive samples. The positive class is interpreted as “tested 

positive for diabetes.” There are eight input features for the data 
samples. The results of the tenfold cross validation are shown in 

Table 9. From Tables13- 17, we can observe the results of proposed 

algorithm Vs various algorithms with respect to AUC, Precision, F-
measure, TP rate and TN rate. From all the tables we can conclude 

that proposed algorithm has given good results on AUC and tie and 
some underperforming results in the case of remaining measures. 

The Reason for the performance of proposed algorithm  is the multi 
class nature of the dataset and the majority and minority ratio of the 

dataset is very high (i.e. 500:268). 
 

 
 

 
(3) Hepatitis Dataset: This data set is used to diagnose whether a 

hepatitis patient will die or live. Number of instances in the data set 
is 155, number of attributes is 20, and number of classes is 2 includ-

ing DIE and LIVE. There are 123 LIVE instances and 32 DIE in-
stances. There are 168 missing values in this data set. The results of 

the tenfold cross validation are shown in Table 3. From Tables 13-17, 
we can observe the results of proposed algorithm Vs various algo-

rithms with respect to AUC, Precision, F-measure, TP rate and TN 
rate. From all the tables we can conclude that proposed algorithm has 

given good results on all the measures. The Reason for the perfor-
mance of Proposed Algorithm is the multi class nature of the dataset 

and the majority and minority ratio of the dataset is very high 
(i'e.123:32). 

 
 

 
 

 

 

 
(4) Breast-w Dataset: This is one of the breast cancer databases at 

UCI, collected at the University of Wisconsin by W. H.Wolberg. The 
problem is to predict whether a tissue sample taken from a patient's 

breast is malignant or benign. There are two classes, ten numerical 
attributes, and 699 observations. The results of the tenfold cross va-

lidation are shown in Table 7. From Tables 13-17, we can observe 
the results of proposed algorithm Vs various algorithms with respect 

to AUC, Precision, F-measure, TP rate and TN rate. From all the 
tables we can conclude that proposed algorithm has given moderate 

results on Breast-w dataset. The Reason for the performance of pro-
posed algorithm is the multi class nature of the dataset and the ma-

jority and minority ratio of the dataset is moderately high (i’e: 
458:241). 

 
(5) Breast Cancer Dataset: This is one of the breast cancer databases 

at UCI, collected at the University Medical Centre, Institute of On-
cology, Ljubljana, Yugoslavia by Ming Tan and Jeff Schlimmer. 

There are two classes, in which 201 instances of one class and 85 
instances of another class.  Nine attributes, some of which are linear 

and some are nominal, and in total 286 observations. There are many 
missing values in this data set. The results of the tenfold cross valida-

tion are shown in Table 6. From Tables 13-17, we can observe the 
results of proposed algorithm Vs various algorithms with respect to 

AUC, Precision, F-measure, TP rate and TN rate. From all the tables 
we can conclude that proposed algorithm has given moderate results 

on Breast-w dataset. The Reason for the performance of proposed 
algorithm is the multi class nature of the dataset and the majority and 

minority ratio of the dataset is moderately high (i’e: 201:85). 
 

(6) Credit-g Dataset: This UCI dataset was contributed by Hans 

Hofmann. This UCI dataset is concerned regarding credit card appli-
cations. Number of instances in the data set is 1000, number of 

attributes is 20, out of which 7 are numeric and 13 are nominal. The 
number of classes is 2. There are no missing values in this dataset. 

The results of the tenfold cross validation are shown in Table 8. 
From Tables 13-17, we can observe the results of proposed algorithm 

Vs various algorithms with respect to AUC, Precision, F-measure, 
TP rate and TN rate. From all the tables we can conclude that pro-

posed algorithm has given underperformed results on Credit-g data-
set. The Reason for the moderate performance of proposed algorithm 

is the multi class nature of the dataset and the majority and minority 
ratio of the dataset is moderately high (i’e: 700:300). 

(7) Ionosphere Dataset: This UCI dataset was contributed by Vince 
Sigillito. This radar data was collected by a system in Goose Bay, 

Labrador. This system consists of a phased array of 16 high frequen-
cy antennas with a total transmitted power on the order of 6.4 kilo-

watts. Number of instances in the data set is 351, number of 
attributes is 34. The number of classes is 2. There are no missing 

attribute values. The results of the tenfold cross validation are shown 
in Table 4. From Tables 13-17, we can observe the results of pro-

posed algorithm Vs various algorithms with respect to AUC, Preci-
sion, F-measure, TP rate and TN rate. From all the tables we can 

conclude that proposed algorithm has given moderate results on 
Breast-w dataset. The Reason for the performance of proposed algo-

rithm is the multi class nature of the dataset and the majority and 
minority ratio of the dataset is moderately high (i’e: 225:126). 
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Table 1. Tenfold cross validation performance for Ecolic dataset 

 

   System AUC  Precision F-measure TP Rate              TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.963±0.033 0.935±0.058 0.945±0.040 0.959±0.054 0.948±0.050 

CART                0.955±0.032 0.920±0.062  0.944±0.039 0.973±0.041 0.934±0.054 

REP                 0.950±0.036 0.904±0.071 0.928±0.042 0.959±0.052 0.919±0.071 

SMOTE  0.960±0.037         0.935±0.061         0.943±0.041        0.955±0.057        0.948±0.053 

Prop. Alg. 0.968±0.038 0.940±0.083     0.943±0.060   0.958±0.077        0.961±0.060 

_____________________________________________________________________________________________ 
 

Table 2.Tenfold cross validation performance for Hepatitis dataset 

_____________________________________________________________________________________________ 

 System               AUC              Precision             F-measure        TP Rate           TN Rate 

 

C4.5          0.668±0.184 0.510±0.371 0.409±0.272 0.374±0.256 0.900±0.097 

CART          0.563±0.126 0.232±0.334 0.179±0.235 0.169±0.236 0.928±0.094 

REP                0.619±0.149       0.293±0.386       0.210±0.259        0.187±0.239      0.942±0.093 

SMOTE           0.792±0.112       0.709±0.165      0.677±0.138         0.681±0.188       0.837±0.109 

Prop. Algor.   0.745±0.186       0.740±0.215    0.705±0.192   0.722±0.248   0.713±0.253   

____________________________________________________________________________________________  

 
Table 3 Tenfold cross validation performance for ionosphere dataset 

_____________________________________________________________________________________________                                           

System  AUC                  Precision          F-measure        TP Rate            TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.891±0.060    0.895±0.084    0.850±0.066     0.821±0.107    0.940±0.055 

CART       0.896±0.059   0.868±0.096     0.841±0.070      0.803±0.112    0.921±0.066  

REP           0.902±0.054    0.886±0.092     0.848±0.067        0.826±0.104    0.933±0.063          

SMOTE     0.904±0.053   0.934±0.049       0.905±0.048       0.881±0.071   0.928±0.057     

Prop. Algor. 0.901±0.070         0.928±0.068       0.893±0.072        0.868±0.106     0.921±0.079 

_____________________________________________________________________________________________ 

 
Table 4 Tenfold cross validation performance for labor dataset 

_____________________________________________________________________________________________                

System  AUC               Precision    F-measure        TP Rate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.726±0.224 0.696±0.359      0.636±0.312      0.640±0.349       0.833±0.127 

CART         0.750±0.248 0.715±0.355      0.660±0.316      0.665±0.359      0.871±0.151 

REP            0.767±0.232       0.698±0.346      0.650±0.299        0.665±0.334     0.765±0.194           

SMOTE     0.833±0.127      0.871±0.151 0.793±0.132         0.765±0.194     0.847±0.187       

Prop. Algor. 0.856±0.225        0.863±0.246      0.861±0.234       0.890±0.257     0.832±0.267    
_________________________________________________________________________________________________  

Table 5 Tenfold cross validation classification performance for breast_cancer dataset 

_____________________________________________________________________________________________     

System                 AUC                  Precision              F-measure               TP Rate                TN Rate 

 ____________________________________________________________________________________________ 

C4.5  0.606±0.087    0.753±0.042       0.838±0.040    0.947±0.060         0.260±0.141  

CART         0.587±0.110         0.728±0.038       0.813±0.038     0.926±0.081       0.173±0.164 

REP            0.578±0.116         0.721±0.037       0.805±0.042       0.917±0.087        0.151±0.164            

SMOTE     0.717±0.084         0.710±0.075      0.730±0.076        0.763±0.117        0.622±0.137     

Prop. Algor. 0.596±0.108         0.613±0.074        0.677±0.077       0.767±0.122        0.416±0.164 

                                                        Table 6.Tenfold cross validation performance for Breast_wdataset 

______________________________________________________________________________________________________________  

System             AUC                         Precision             F-measure                  TP Rate          TN Rate 

 

C4.5              0.957±0.034 0.965±0.026 0.962±0.021 0.959±0.033 0.932±0.052 

CART                0.950±0.032 0.968±0.026         0.959±0.020 0.952±0.034 0.940±0.051 

REP               0.957±0.030        0.965±0.030         0.960±0.021      0.957±0.033     0.931±0.060 

SMOTE             0.967±0.025        0.974±0.024         0.960±0.022        0.947±0.035     0.975±0.024 

Prop. Algo.         0.956±0.032  0.964±0.039        0.948±0.032  0.935±0.047  0.964±0.039   

_____________________________________________________________________________________________ 
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                                                 Table 7.Tenfold cross validation performance for Credit-g dataset 

_____________________________________________________________________________________________ 

 AUC                   Precision          F-measure         TPRate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.647±0.062 0.767±0.025 0.805±0.022 0.847±0.036 0.398±0.085 

CART         0.716±0.055 0.779±0.030        0.820±0.028 0.869±0.047 0.421±0.102 

REP             0.705±0.057      0.765±0.025         0.814±0.026      0.872±0.057       0.371±0.105   

SMOTE       0.778±0.041     0.768±0.034         0.787±0.034      0.810±0.058      0.713±0.056 
Prop. Algor. 0.718±0.067         0.701±0.59           0.711±0.55           0.728±0.085      0.631±0.099 

 

                                            
                                        Table8.Tenfold cross validation performance for Pima Diabetes dataset 

 

  System                      AUC              Precision              F-measure             TP Rate      TN Rate 

____________________________________________________________________________________________   

 C4.5       0.751±0.070  0.797±0.045          0.806±0.044                0.821±0.073                0.603 ±0.111 

CART              0.743±0.071          0.782±0.042         0.812±0.040              0.848±0.066                 0.554±0.113 

REP               0.754±0.060          0.785±0.037         0.809±0.037              0.8384±0.072              0.567±0.105 

SMOTE             0.791±0.041         0.781±0.064          0.741±0.046             0.712±0.076                0.807±0.077 

Prop Algor          0.795±0.61          0.778±0.075           0.735±0.64              0.706±0.96                 0.803±0.88   

_________________________________________________________________________________________ 
                                                           

                                             Table 9 Tenfold cross validation performance for vote dataset 

____________________________________________________________________________________________ 

System               AUC                   Precision          F-measure        TP Rate        TN Rate 

___________________________________________________________________________________________ 

C4.5  0.979±0.025 0.971±0.027 0.972±0.021 0.974±0.029 0.953±0.045  

CART        0.973±0.027 0.971±0.028      0.966±0.022 0.961±0.037 0.953±0.046 

REP          0.957±0.023  0.969±0.035 0.961±0.025 0.955±0.034    0.949±0.059 

SMOTE  0.984±0.017 0.977±0.027 0.969±0.021  0.963±0.037  0.981±0.023 

Prop. Algor. 0.968±0.031       0.980±0.073        0.946±0.041      0.918±0.071       0.984±0.030 
______________________________________________________________________________________________________________ 

                                            

                                                              Table 10 Tenfold cross validation performance for Sonar dataset 
_____________________________________________________________________________________________               

 System  AUC               Precision    F-measure        TP Rate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.753±0.113 0.728±0.121      0.716±0.105      0.721±0.140       0.749±0.134 

CART         0.721±0.106 0.709±0.118      0.672±0.106      0.652±0.137     0.756±0.121 

REP            0.746±0.106       0.733±0.134      0.689±0.136        0.685±0.192     0.762±0.145           

SMOTE     0.814±0.090      0.863±0.068 0.861±0.061         0.865±0.090     0.752±0.113 

Prop. Algor. 0.772±0.112        0.864±0.096      0.849±0.0.81       0.847±0150     0.752±0.182    
_________________________________________________________________________________________________ 

 

 

Table 11 Tenfold cross validation performance for Sick dataset 
_____________________________________________________________________________________________               

 System  AUC               Precision    F-measure        TP Rate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.726±0.224 0.696±0.359      0.636±0.312      0.640±0.349       0.833±0.127 

CART         0.750±0.248 0.715±0.355      0.660±0.316      0.665±0.359      0.871±0.151 

REP            0.767±0.232       0.698±0.346      0.650±0.299        0.665±0.334     0.765±0.194           

SMOTE     0.833±0.127      0.871±0.151 0.793±0.132         0.765±0.194     0.847±0.187 

Prop. Algor. 0.935±0.036        0.886±0.052      0.917±0.037       0.953±0.043     0.870±0.065   
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Table 13. Summary of results on AUC Vs Prop. Algor. 
_____________________________________________ 

System   C4.5   CART   REP       SMOTE 

Dataset       __________________________________ 
Ecolic  Win Win Win Win 
Hepatitis        Win Win Win Loss 
Ionosphere    Win Win Tie Loss 
Labor                    Win Win Win Win 
Breast  Loss Win Win Loss 
Breast_w  Tie Win Tie Loss  
Credit-g  Win Win Win Loss 
Diabetes        Win Win Win Loss 
Vote                      Loss Loss Win Loss 
Sonar                  Win Win Win Loss 

Sick                   Win Win Win Win 

____________________________________________ 
 

Table 14.Summary of results on Precision Vs Prop.Algor. 
_____________________________________________ 

System                C4.5     CART    REP      SMOTE 
Dataset       __________________________________ 
Ecolic  Win Win Win Win 
Hepatitis        Win Win Win Win 

Ionosphere    Win Win Win Loss 
Labor                    Win Win Win Loss 
Breast  Tie Loss Tie Loss             
Breast_w  Loss Loss Loss Loss  
Credit-g  Loss Loss Loss Loss 
Diabetes        Loss Loss Loss Loss 
Vote                    Win Win Win Win 
Sonar          Win Win Win Tie 
Sick                    Win Win Win Win 

____________________________________________ 

 
Table 15.Summary of results on F-Measure Vs Prop.Algor. 

_____________________________________________ 

System   C4.5     CART    REP      SMOTE 

Dataset       __________________________________ 
Ecolic  Tie Tie Win Tie 
Hepatitis        Win Win Win Win 
Ionosphere    Win Win Win Loss 
Labor                     Win Win Win Win 
Breast  Loss Loss Loss Loss 
Breast_w  Loss Loss Loss Loss  
Credit-g  Loss Loss Loss Loss 
Diabetes        Loss Loss Loss Loss 
Vote                     Loss Loss Loss Loss 
Sonar             Win Win Win Loss 
Sick                  Win Win Win Win 

____________________________________________ 
Table 16.Summary of results on TP RateVs Prop.Algor. 

_____________________________________________ 
System   C4.5     CART    REP      SMOTE 

Dataset       __________________________________ 

Breast  Loss Loss Loss Win 
Breast_w  Loss Loss Loss Loss  
Credit-g  Loss Loss Loss Loss 
Diabetes        Loss Loss Loss Loss 
Ecolic  Tie Loss Tie Win 
Hepatitis        Win Win Win Win 
Ionosphere    Win Win Win Loss 
Labor             Win Win Win Win 
Vote               Loss Loss Loss Loss 
Sonar                       Win Win Win Loss 

Sick                    Win Win Win Win 
____________________________________________ 

 
Table 17.Summary of results on TN Rate Vs Prop.Algor. 

_____________________________________________ 
System   C4.5     CART    REP      SMOTE 

Dataset       __________________________________ 
Ecolic  Win Win Win Win 
Hepatitis        Loss Loss Loss Loss 
Ionosphere    Loss Tie Loss Win 
Labor             Tie Loss Win Loss 
Breast  Win Win Win Loss 
Breast_w  Win Win Win Loss  
Credit-g  Win Win Win Loss 

Diabetes        Win Win Win Loss 
Vote               Win Win Win Win 
Sonar                     Win Loss Loss Tie 
Sick                     Win Tie Win Win 
____________________________________________ 

 

(8) Labor Dataset: This UCI dataset was contributed by Stan 

Matwin. This dataset was used to test 2tier approach with learn-

ing from positive and negative examples. Number of instances in 

the data set is 57, number of attributes is 16, out of which 8 are 

numeric and 8 are nominal. The number of classes is 2. There are 
some missing attribute values.The results of the tenfold cross 

validation are shown in Table 5. From Tables 13-17, we can ob-

serve the results of proposed algorithm Vs various algorithms 

with respect to AUC, Precision, F-measure, TP rate and TN rate. 

From all the tables we can conclude that proposed algorithm has 

given good results on Labor dataset. One the Reason for the per-

formance of proposed algorithm is due to the small size,  the mul-

ti class nature of the dataset and the majority and minority ratio 

of the dataset is moderately high (i’e: 37:20). 

 

(9) Vote Dataset: This UCI dataset was contributed by This data 

set is used to predict the result of a vote. It is from 1984 united 
states congressional voting records database. This data set in-

cludes votes for each of the U.S. House of representatives con-

gressmen on the 16 key votes identified by the Congressional 

Quarterly Almanac (CQA). The CQA lists nine different types of 

votes: voted for, paired for, and announced for (these three sim-

plified to yea), voted against, paired against, and announced 

against (these three simplified to nay), voted present, voted 

present to avoid conflict of interest, and did not vote or otherwise 

make a position known (these three simplified to an unknown 

disposition). Number of instances is 435 (267 democrats, 168 

republicans), number of attributes is 17, and number of classes is 
2. There are 392 missing values in this data set. The results of the 

tenfold cross validation are shown in Table 7. From Tables 13-17, 

we can observe the results of proposed algorithm Vs various al-

gorithms with respect to AUC, Precision, F-measure, TP rate and 

TN rate. From all the tables we can conclude that proposed algo-

rithm has given moderate results on Breast-w dataset. The Rea-

son for the performance of proposed algorithm is the multi class 

nature of the dataset and the majority and minority ratio of the 

dataset is moderately high (i’e: 287:168). 

 

(10) Sonar Dataset: This UCI dataset was contributed by Terry 

Sejnowski. This dataset contains 111 patterns obtained by bounc-
ing sonar signals off a metal cylinder at various angles and under 

various conditions. This data set can be used in a number of dif-
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ferent ways to test learning speed, quality of ultimate learning, 
ability to generalize, or combinations of these factors. Number of 

instances in the data set is 208, number ofattributes is 60. The 

number of classes is 2. There are no missing values in dataset.The 

results of the tenfold cross validation are shown in Table 11. 

From Tables 13-17, we can observe the results of proposed algo-

rithm Vs various algorithms with respect to AUC, Precision, F-

measure, TP rate and TN rate. From all the tables we can con-

clude that proposed algorithm has given good results on Sonar 

dataset. One the Reason for the performance of proposed algo-

rithm is due to the large size,  the multi class nature of the dataset 

and the majority and minority ratio of the dataset is moderately 
high (i’e: 111:97). 

 

(11) Sick Dataset:This UCI dataset was contributed by the Gara-

van Institute and J. Ross Quinlan, New South Wales Institute, 

Sydney, Australia. Number of instances in the data set is 3772, 

number ofattributes is 29, out of which 7 are numeric and 22 are 

nominal. Thenumber of classes is 2. There are some missing val-

ues in dataset.The results of the tenfold cross validation are 

shown in Table 12. From Tables 13-17, we can observe the re-

sults of proposed algorithm Vs various algorithms with respect to 

AUC, Precision, F-measure, TP rate and TN rate. From all the 
tables we can conclude that proposed algorithm has given excel-

lent results on Sick dataset. One the Reason for the performance 

of proposed algorithm is due to the very huge size of the dataset, 

irrelevant attributes present in the dataset, the multi class nature 

of the dataset and the majority and minority ratio of the dataset is 

moderately high (i’e: 3541:231). 

 
 

7. Concusion: 

In this paper we present the class imbalance problem paradigm, 

which exploits the subset filtering strategy in the supervised 

learning research area, and implement it with C4.5 as its base 

learner. Experimental results show thatour proposed algorithm 

performed well in the case of multi class imbalance datasets. Fur-

thermore, our proposed algorithm is much less volatile than C4.5. 

In our future work, we will apply our proposed algorithm to more 

learning tasks, especially high dimensional feature learning tasks. 
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